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Abstract: Type IIB string theory on spacetimes that are asymptotically AdS5×S5 can

be defined using four dimensional N = 4 super Yang-Mills theory. Six of the dimensions

of the string theory are holographically reconstructed in the Yang-Mills theory. In this

article we study how these dimensions and local physics in these dimensions emerge. We

reorganize the dynamics of the 1
2 BPS sector of the field theory by rewriting it in terms

of Schur polynomials. The Young diagram labeling of these polynomials can be viewed as

a book keeping device which summarizes how the operator is constructed. We show that

aspects of the geometry of the extra holographic dimensions are captured very naturally

by the Young diagram. Gravitons which are localized at a specific position in the bulk

correspond to boxes added at a specific location on the Young diagram.
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1. Introduction

We do not yet know what string theory is. AdS/CFT [1] seems to provide us with a def-

inition of string theory on negatively curved spaces; for example, type IIB string theory

on spacetimes that are asymptotically AdS5×S5 is given by four dimensional N = 4 super

Yang-Mills theory (see [2] for an explicit demonstration of this in the 1
2 -BPS sector). There

are many aspects of this definition that need to be clarified. The string theory is a 10 di-

mensional theory; apparently, there are an additional 6 dimensions that are holographically

reconstructed in the Yang-Mills theory. Understanding how these dimensions emerge and

further, how local physics in these dimensions emerge is a fascinating problem. In this

article, we explore this issue.

The dynamical content of any quantum field theory is captured in its correlation func-

tions. The extra holographic dimensions together with their local dynamics should be

coded into the correlation functions of N = 4 super Yang-Mills theory. See [3] for detailed

examples of what information is coded and how its coded. According to the AdS/CFT

correspondence, we expect a classical geometry to emerge in the strong ’t Hooft coupling

limit of the field theory. In this article, we focus mainly on correlation functions of 1
2

BPS operators because these correlators are protected [4]. Thus, we will compute these

correlation functions at weak coupling with confidence that these free field results can be

extrapolated, with no change, to strong coupling.
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Figure 1: A Young diagram with the weight of each box displayed.

Our approach entails performing a reorganization of the dynamics of the field theory.

The 1
2 BPS sector of the theory is captured by the singlet dynamics of a single holomorphic

matrix [5, 6]. The reorganization we employ is achieved by a change of variables: we will

use Schur polynomials which provide a complete description of the 1
2 BPS sector [5].1 This

reorganization will allow a significant simplification of the computation of correlators for

two reasons. First, the Schur polynomials satisfy a nice product rule that can be used

to collapse any product of Schur polynomials into a sum of Schur polynomials. Second,

the two point functions of Schur polynomials, in the free field theory limit, are known

exactly [5]. Thus, this reorganization provides a considerable simplification of correlator

calculations. The label of the Schur polynomial, a Young diagram, plays a central role.

We will start with a quick review of Young diagrams. We have two goals in mind: (i)

to recall the definition of the hooks and the weights of a Young diagram and (ii) to stress

that the hooks and weights encode the specific way in which a tensor has been symmetrized

or antisymmetrized.

Young diagrams are a useful way to label the irreducible representations of SU(N).2

A tensor transforming in an irreducible representation of SU(N) has a definite symmetry

under permutations of its indices. It is this symmetry that the Young diagram records.

A Young diagram with a single column containing n-boxes corresponds to a completely

antisymmetric tensor with n indices. A Young diagram with a single row containing m-

boxes corresponds to a completely symmetric tensor with m indices. To compute the

dimension of an SU(N) irreducible representation corresponding to a particular Young

diagram, we need to define the weight3 and the hook of each box in the Young diagram.

A box in row i and column j has a weight equal to N − i + j. An example of a Young

diagram with the weights filled in is given in figure 1.

1They are simply an alternative basis to the trace basis.
2A Young diagram with n boxes also labels an irreducible representation of the symmetric group Sn.

We will also exploit this connection in what follows.
3These are not the Dynkin weights.

– 2 –



J
H
E
P
1
1
(
2
0
0
8
)
0
6
1

Figure 2: The hook shown is associated with the box in which the corner of the elbow lies.

Figure 3: A Young diagram with the hook length of each box displayed.

To obtain the hook associated to a given box, draw a line starting from the given box

towards the bottom of the page until you exit the Young diagram, and another line starting

from the same box towards the right until you again exit the diagram. These two lines

form an elbow - what we call the hook. An example of a hook is given in figure 3.

The hook length for the given box is obtained by counting the number of boxes the

elbow belonging to the box passes through. A Young diagram with the hook lengths filled

in is given in figure 3.

The dimension of the SU(N) irreducible representation corresponding to this Young

diagram is given by the product of the weights divided by the product of the hooks. For

the example we are considering

d =
N2(N2 − 1)(N2 − 4)

5 · 3 · 3 .

The hooks and the weights provide an efficient way to encode the combinatorics of tensors

with a definite symmetry under swapping indices. For example, the totally antisymmetric

tensor with three indices, gives a non-zero result only if all indices take distinct values.

– 3 –
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Thus, the first index can take any one of N values, the second index any one of N − 1

values and the third index any one of N − 2 values. These are exactly the value of the

weights of the corresponding Young diagram. The division by the hooks corrects for the

fact that not all elements of this tensor are independent - swapping any two indices only

costs a sign.

Recently is has become clear that Young diagrams also provide a useful labeling of the

invariant variables of matrix models. The first such example was given in [5], where it was

shown that Schur polynomials built using a single complex scalar Z provide a convenient

parametrization of the 1
2 BPS sector of the theory. A particularly nice property of the

Schur polynomials

χR(Z) =
1

n!

∑

σ∈Sn

χR(σ)Zi1
iσ(1)

· · ·Zin
iσ(n)

,

is that they have a diagonal two point function

〈

χR(Z)†χS(Z)
〉

= fRδRS . (1.1)

If R is a Young diagram with n boxes, then the Schur polynomial is built using products

of traces of Higgs fields Z such that each term is a product of n Zs. The factor fR is equal

to the product of the weights of R. In addition to this, the Schur polynomials also satisfy

a product rule called the Littlewood-Richardson rule

χR1(Z)χR2(Z) =
∑

S

gR1 R2 SχS(Z) . (1.2)

The Littlewood-Richardson number gR1 R2 S counts the number of times the SU(N) irre-

ducible representation S appears in the tensor product R1 ⊗ R2. The product rule follows

immediately from the fact that when evaluated on a unitary matrix U , χR(U) gives the

character of U in irreducible representation R. These results have been extended to de-

fine operators in multimatrix models, that have diagonal two point functions and whose

multipoint functions again follow from group theory reasoning [7 – 9]. For a recent review

see [10].

According to the AdS/CFT correspondence [1], these operators have a description in a

dual quantum gravity. In particular, for operators with an R-charge of order N2 the Schur

polynomials should be dual to new geometries [2]. We can now sharpen the question we

are asking: the goal of this article is to investigate how this dual geometry emerges. If the

Young diagram labeling of operators is to provide a useful tool to explore the AdS/CFT

correspondence, the dual geometry should emerge naturally from the Young diagram. We

will argue that this is indeed the case. Our approach to this problem entails defining

coherent states in the gauge theory that we propose are dual to graviton states. This gives

us a way to explore the dual geometry: gravitons move along null geodesics and hence they

“know” about the dual geometry. To define the coherent states, we need to define graviton

creation and annihilation operators in the Yang-Mills theory. The graviton annihilation

and creation operators that we define add or remove boxes to the Young diagram describing

the background. The state with a box added/removed needs to be normalized by a factor

– 4 –
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of
√

c
N where c is the weight of the added/removed box. The extra

√

c
N factor plays a key

role in ensuring that the correct dual geometry emerges.

In the next section we start by discussing gravitons in the AdS5×S5 background. This

serves to illustrate the main ideas in the simplest possible setting. In section 3 we turn to

consider LLM geometries; section 4 is concerned with geometries that arise when the field

theory background is built from two matrices. In section 5 we discuss our results.

To conclude this introduction, we mention the papers [11, 12]. By probing the 1
2

BPS operators in the gauge theory with single trace operators that correspond to closed

strings these papers have already understood some aspects of the geometry of the dual IIB

supergravity. These articles used an eigenvalue density description for the 1
2 BPS operators

in the gauge theory. Using the results of section 3.3 it is easy to see that where our results

and those of [11, 12] overlap, they are consistent.

2. Gravitons in AdS5×S5

N = 4 super Yang-Mills theory is a conformal field theory. By the state/operator corre-

spondence, the theory on 4 dimensional Euclidean space can be mapped to a theory on

R × S3. Under this map operators map to states and conformal dimensions of operators

map into energies of states. We will primarily be interested in the half-BPS operators that

can be constructed from the s-waves of complex combinations of the adjoint scalars of the

theory on R× S3. We will make use of two scalars Z, Y ; they have two point function (we

suppress the spacetime dependence of this correlator as these spacetime dependences will

play no role in this article)

〈

ZijZ
†
kl

〉

= δilδjk =
〈

YijY
†
kl

〉

.

Our computations will mostly be performed in the theory on four dimensional Euclidean

space, where we can use the known results for correlators of Schur polynomials and re-

stricted Schur polynomials. To make contact with the dual gravity we will conformally

map our results to the theory on R×S3. The boundary of AdS5×S5 in global coordinates

is R × S3 - it is the space that the field theory is defined on; this is why it is easiest to

interpret the field theory after mapping to R × S3. For the operators we consider, after

mapping to R × S3, the dynamics reduces to that of N non-relativistic fermions in an

external potential [5, 6, 13]. The phase space of these fermions can be identified with the

moduli space of the dual geometries [2].

Chiral primary operators in N = 4 super Yang-Mills theory, with R charge of O(1)

are dual to Kaluza-Klein gravitons on the AdS5×S5 background [1]. The R-charge of the

operator maps into the angular momentum (on the S5) of the graviton. The operator dual

to a graviton with one unit of angular momentum is

Tr (Z)√
N

.
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The factor of N− 1
2 ensures that this operator has a unit two point function and is hence

dual to a normalized state. It is straight forward to compute
〈(

Tr (Z†)√
N

)n(
Tr (Z)√

N

)m〉

= n!δm,n . (2.1)

This suggests that the action of Tr (Z)/
√

N on the vacuum in the super Yang-Mills the-

ory matches the action of the graviton creation operator in the dual quantum gravity on

AdS5×S5. We will write connections like this using a double sided arrow

Tr (Z)√
N

↔ a† ,

where a† is a graviton creation operator. It is useful to use the coordinates of [2]. In these

coordinates, there is an S3 extracted from the S5. The remaining two coordinates of the

S5 is combined with the radial direction of AdS5 to make three new coordinates, y, x1, x2.

We can also describe the x1, x2 plane using an angle φ and a radius r. The graviton that is

created is an s-wave on the field theory S3. It is also an s-wave on the second S3 (extracted

from S5) and is smeared along the φ direction. It is localized at y = 0 and at some fixed

r. It is this localization that we are trying to describe. A normalized n-graviton state is

dual to the operator
1√
n!

(

Tr (Z)√
N

)n

.

We can also define the graviton annihilation operator as

1√
N

Tr

(

d

dZ

)

↔ a .

Note that

[a, a†] = 1 ↔
[

1√
N

Tr

(

d

dZ

)

,
Tr (Z)√

N

]

=
1

N

(

Tr
d

dZ
Tr Z

)

= 1. (2.2)

As a check of these identifications, we will now study the dynamics of coherent states

of gravitons and verify that we recover the expected graviton dynamics. Define an operator

dual to a graviton coherent state as

Oz = N exp

(

Tr (Z)√
N

z

)

,

[

1√
N

Tr

(

d

dZ

)

,Oz

]

= zOz .

The normalization N is easily determined (z̄ is the complex conjugate of z)

〈

O†
zOz

〉

= |N |2
∞
∑

n=0

∞
∑

m=0

〈(

Tr (Z)√
N

)n (Tr (Z)†√
N

)m〉
zn

n!

z̄m

m!

= |N |2
∞
∑

n=0

|z|2n

n!

= |N |2e|z|2

= 1, (2.3)

Oz = e−
1
2
|z|2e

zTr (Z)√
N . (2.4)
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Since we study 1
2 BPS operators, the conformal dimension of our operators (which is the

graviton’s energy in the dual description) equals their R-charge

[R,Oz] = e−
1
2
|z|2

∞
∑

n=0

n
znTr (Z)n

n!
√

Nn
.

After conformally mapping to R × S3, the operator Oz is mapped to the coherent state

|z〉, so that (z = re−iφ)

〈

O†
z[R,Oz]

〉

= 〈z|H|z〉 = z̄z = r2,

〈

O†
zi

d

dt
Oz

〉

= 〈z|i d

dt
|z〉.

The Lagrangian governing the low energy excitations of this coherent state on R × S3 is

L = 〈z|i d

dt
|z〉 − 〈z|H|z〉 = φ̇r2 − r2.

The equations of motion determine φ̇ = 1 and ṙ = 0, which are by now, familiar results for

gravitons in AdS5×S5 [14].

Before moving on we will give a discussion of (2.1). This formula can be obtained

using elementary (just Wick contract) methods. We will give a derivation of it using Schur

technology since this will generalize nicely in the next section. The operator Tr (Z) is equal

to the Schur polynomial χ (Z). A product of Schur polynomials is easily computed using

the Littlewood-Richardson rule. Using this rule, it is straight forward to verify that (dR is

the dimension of the Sn irreducible representation labeled by R)

(Tr (Z))n = (χ (Z))n =
∑

R

dRχR(Z),

and hence that (R is a Young diagram with n boxes; S is a Young diagram with m boxes;

the sums run over all possible diagrams with the correct number of boxes)

〈(

Tr (Z†)√
N

)n(
Tr (Z)√

N

)m〉

=

〈(

χ (Z)†√
N

)n(
χ (Z)√

N

)m〉

= δm,n

∑

R

∑

S

1

Nn
dRdS

〈

χR(Z)†χS(Z)
〉

= δm,n

∑

R

(dR)2
fR

Nn

= δm,n

∑

R

(dR)2
(

1 + O

(

1

N2

))

= δm,nn!

(

1 + O

(

1

N2

))

,

where we have used the fact that
∑

R(dR)2 is equal to the order of the group. From our

more elementary techniques we know that all corrections to this large N result vanish.

Note that this multipoint correlator was computed using the product rule and the two

point function for Schur polynomials.

– 7 –
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Finally, consider

〈(

Tr (Zp †)√
pNp

)n(
Tr (Zp)√

pNp

)m〉

= n!δm,n

(

1 + O

(

1

N2

))

. (2.5)

This suggests that
Tr (Zp)√

pNp

creates gravitons which each carry p units of angular momentum. The result (2.5) can

again be obtained by using Schur technology. To do so, we need an expression for Tr (Zp),

which has been given in [15]. For example, for p = 2, 3, 4 we have (in general the right

hand side is a sum over all hooks with an alternating sign; the first term corresponding to

the symmetric representation is always positive)

Tr (Z2) = χ (Z) − χ (Z),

Tr (Z3) = χ (Z) − χ (Z) + χ (Z),

Tr (Z4) = χ (Z) − χ (Z) + χ (Z) − χ . (2.6)

3. LLM geometries

In the previous section, we applied Tr Z and Tr d
dZ to the vacuum of the super Yang-Mills

theory to study gravitons in AdS5×S5. In this section we will study gravitons propagating

on different backgrounds. These backgrounds correspond, in the super Yang-Mills theory,

to the operator χB(Z) where B is a Young diagram with O(N2) boxes.

3.1 The annulus

A simple warm up example is provided by the case that B is a Young diagram with M

columns and each column contains exactly N boxes; we take M to be O(N) so that µ ≡ M
N

is a number of O(1). Let R be a Young diagram with n = O(1) boxes. We will use the

notation +R to denote the Young diagram obtained by stacking R next to B, and the

notation −R to denote the Young diagram obtained by removing R from the “bottom

right corner” of B as shown in figure 4 below.

Our background is given by taking the “vacuum” to be the normalized state dual to

the operator

|B〉 ↔ χB(Z)√
fB

.

Gravitons on this background will correspond to (small) fluctuations about this state.4 An

operator dual to an n graviton state in the background B is
(

Tr (Z)√
N

)n χB(Z)√
fB

=

(

χ (Z)√
N

)n χB(Z)√
fB

=
∑

R

dR
χ+R(Z)√

fBNn
.

4By small we mean small enough that backreaction can be neglected. This is the case since we take n

to be O(1).
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Figure 4: The definition of +R and −R in terms of R and B.

This formula is exact; to get this result, we used the product rule for Schur polynomials.

We will now compute the two point correlator of this operator, to the leading order in the

large N limit
〈

χB(Z)†√
fB

(

Tr (Z)†√
N

)n(
Tr (Z)√

N

)n χB(Z)√
fB

〉

=
∑

R

(dR)2
f+R

fBNn
= (1 + µ)n n! . (3.1)

To see the last equality note that all weights in fB cancel with weights in f+R, leaving

only the weights corresponding to the boxes added to B to produce +R; these boxes all

have a weight of N + M + O(1) where the O(1) number depends on exactly which box is

considered. Given this correlator, a normalized n-graviton state, to leading order in N , is

dual to the operator

On =
1

(1 + µ)n/2
√

n!

(

χ (Z)√
N

)n χB(Z)√
fB

.

Thus, in this new background

Tr (Z)√
N

On =

√

c

N

√
n + 1On+1 =

√

1 + µ
√

n + 1On+1 , (3.2)

where c is the weight of the box added to the background Young diagram B after multi-

plying by Tr (Z) = χ (Z). We can write

Tr (Z)√
N

↔ a†

with a† a graviton creation operator in the background B. From (3.2) we can read off its

action on an n graviton state

a†|n〉 =

√

c

N

√
n + 1|n + 1〉 =

√

1 + µ
√

n + 1|n + 1〉 .

This is perfectly consistent with the trivial background treated in section 2, since in that

case, to leading order in N , we have c
N = 1. We can consider the action of a derivative on

the operator On. It is straight forward to verify that (the rule for the derivative of a Schur

polynomial was conjectured in [16] and proved in [17])
[

Tr d
dZ√
N

,
1

(1 + µ)n/2
√

n!

(

χ (Z)
√

N

)n
χB(Z)√

fB

]

– 9 –
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=
√

n
√

1 + µ





1

(1 + µ)(n−1)/2
√

(n − 1)!

(

χ (Z)
√

N

)n−1
χB(Z)√

fB



+ · · · ,

=
√

n
√

1 + µOn−1 + · · · (3.3)

where · · · represents an extra term that does not yet have an obvious interpretation.5

Ignoring this term, we can identify,

Tr d
dZ√
N

↔ a,

where the graviton annihilation operator acts as

a|n〉 =

√

c

N

√
n|n − 1〉 =

√

1 + µ
√

n|n − 1〉 .

Clearly [a, a†] = 1 + µ. However, this can’t be correct: the identification

[

1√
N

Tr

(

d

dZ

)

,
Tr (Z)√

N

]

↔ [a, a†] = 1 + µ,

implies that
[

1√
N

Tr

(

d

dZ

)

,
Tr (Z)√

N

]

= 1 + µ,

which is in stark disagreement with (2.2). To resolve this discrepancy, note that in contrast

to the trivial background considered in the previous section, we can now act on the operator

dual to the vacuum with the derivative operator to obtain a non-zero result.6 Indeed, we

find
(

Tr ( d
dZ )√
N

)n
χB(Z)√

fB
=
∑

R

dR

∏

i

ci
χ−R(Z)√

fBNn
.

In the last line,
∏

i ci is the product of the weights of the boxes removed by the derivatives.

This formula is again exact. The two point correlator of this operator, to the leading order

in the large N limit, is

〈[(

Tr ( d
dZ )√
N

)n
χB(Z)√

fB

]†(
Tr ( d

dZ )√
N

)n
χB(Z)√

fB

〉

= µn n!.

A natural interpretation is that the derivative operator (which lowers the total R charge

of the state) creates gravitons moving in the opposite direction, which we will call coun-

tergravitons.7 An operator dual to a normalized n-countergraviton state, to leading order

5This extra term arises from the action of the derivative on χB(Z). The term that we have written

explicitely removes some of the boxes that (a†)n added, which is the expected action of an annihilation

operator.
6In the previous section the operator dual to the vacuum was the identity.
7We call a state with positive (negative) R-charge Q = TrZ d

dZ
after subtracting off the R-charge of the

vacuum a graviton (countergraviton). The term antigraviton would be incorrect - antigravitons are created

by Z†; including any antigravitons in the state would take us out of the 1
2

BPS sector.
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in N , is now given by

O−n =
1

µn/2
√

n!

(

Tr
(

d
dZ

)

√
N

)n
χB(Z)√

fB
.

Denote the countergraviton creation and annihilation operators by b† and b. In this case

[

Tr ( d
dZ )√
N

,O−n

]

=

√

c

N

√
n + 1O−n−1 =

√
µ
√

n + 1O−n−1 ,

(where c is the weight of the box removed from the background Young diagram B after

acting with d
dZ ) becomes

b†| − n〉 =
√

µ
√

n + 1| − n − 1〉 ,

in the dual quantum gravity. Note that we are using the field theory R-charge (string

theory angular momentum) to label states. Arguing exactly as above, we have [b, b†] = µ.

The resolution to our paradox is now in sight: the derivative operator creates counter-

gravitons and destroys gravitons; multiplication by Tr (Z) creates gravitons and destroys

countergravitons. It is now easy to argue for the identifications8

Tr (Z)√
N

↔ a† + b ,
Tr ( d

dZ )√
N

↔ a + b† .

These identifications are perfectly consistent with (2.2). Indeed,

[

1√
N

Tr

(

d

dZ

)

,
Tr (Z)√

N

]

↔ [a + b†, a† + b] = (1 + µ) − (µ) = 1 .

Thus, we see that Tr (Z) and Tr
(

d
dZ

)

no longer have a local action on the Young diagram

B. We will define new operators that are local: split

Tr (Z) = Tr (Z)a + Tr (Z)b. (3.4)

The definition of Tr (Z)a is that it can add boxes to B, but only in the upper right hand

corner of the Young diagram, corresponding to the action of a†; Tr (Z)b can add boxes to

B, but only in the lower right hand corner of the Young diagram, corresponding to the

action of b. Similarly, split

Tr

(

d

dZ

)

= Tr

(

d

dZ

)

a

+ Tr

(

d

dZ

)

b

.

Tr
(

d
dZ

)

a
removes boxes from the upper right hand corner corresponding to the action of a

and Tr
(

d
dZ

)

b
removes boxes from the lower right hand corner corresponding to the action

8These identifications also provide an interpretation for the extra term in equation (3.3): the extra term

corresponds to a state with n gravitons and 1 counter graviton.
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of b†. Diagrammatically we have

Tr (Z)aχ = χ , Tr (Z)bχ = χ ,

Tr

(

d

dZ

)

a

χ = (N + 4)χ , Tr

(

d

dZ

)

b

χ = (N − 1)χ . (3.5)

We are computing correlation functions using the product rule and known two point func-

tions for Schur polynomials. We have just defined the product of the new local operators

with the usual Schur polynomials. This product gives a linear combination of Schur poly-

nomials whose two point function is known. Thus we can compute any correlators using

the new local operators which shows that these local operators are indeed well enough de-

fined for our purposes. We will give a more constructive definition of these local operators

below.

We can again use the operators we have defined to build a graviton coherent state and

check that we reproduce the expected graviton dynamics. The operator dual to a coherent

graviton state is

Oz = N
∞
∑

n=0

zn On

(1 + µ)
n
2

√
n!

where

On =
1

(1 + µ)n/2
√

n!

(

Tr (Z)a√
N

)n χB(Z)√
fB

. (3.6)

Requiring a unit two point function determines the normalization

〈

O†
zOz

〉

= |N |2e
|z|2
1+µ = 1,

Oz = e
−|z|2

2(1+µ)

∞
∑

n=0

zn On

(1 + µ)
n
2

√
n!

. (3.7)

This operator satisfies
[

Tr
(

d
dZ

)

a√
N

,Oz

]

= zOz .

Denote the coherent state that this operator maps to by |z〉. The Hamiltonian is

H =
a†a

1 + µ
− b†b

µ
. (3.8)

This Hamiltonian measures the energy with respect to the background B. It is for this

reason that the second term above is negative: the countergravitons are missing boxes,

similar to holes in the Dirac sea. Since the sea is finite the Hamiltonian is bounded below.

To compare results to the dual gravity, we need to translate the background B into an

LLM geometry, using the results of [2] which we will now review. This is most easily done

by first translating the Schur polynomial into a free fermion state and then translating this

– 12 –



J
H
E
P
1
1
(
2
0
0
8
)
0
6
1

Figure 5: The Young diagram B is shown on the left. The corresponding boundary condition for

the LLM geometry is shown on the right.

fermion state into a boundary condition for the LLM geometry. The Schur polynomials

map into an N fermion energy eigenstate [5, 6], which is labeled by a set of N integers

telling us which levels are occupied. Denote the number of boxes in row i of the Young

diagram by ri; the row closest to the bottom of the page has i = 1 and the row closest to the

top of the page has i = N . The energies of the occupied levels are given by ri + i−1. These

occupied states map into rings in the free fermion phase space.9 To get a correspondence

with 1
2 BPS geometries, identify the free fermion phase space with the LLM plane10 and

color occupied regions in black and unoccupied regions in white. This black and white

pattern is the boundary condition for the dual geometry. As an example, we have shown

the boundary condition dual to B in figure 5.

By acting with the graviton creation and annihilation operators, we are producing

small “ripples” on the inner and outer edges of the annulus. These ripples are localized in

the radial direction of the LLM plane in spacetime and they are localized on the Young

diagram. We see a direct connection between locality in spacetime and locality on the

Young diagram. This is a feature of all of the examples we have considered. We have seen

that the oscillators in the new background are scaled by a factor of 1
N times the weight of

the box removed/added by the oscillator. Does this factor have an interpretation in the

dual geometry? The area of the black regions on the LLM plane are proportional to the

number of states in the region. We will use a normalization for which the area divided by

π/N is exactly equal to the number of states in the black region. Thus, the total area of the

black regions is π. The AdS5×S5 background itself corresponds to a black disc of radius

R = 1, in a sea of white. The Young diagram B has a total of N rows and M columns, so

that in the free fermion description, there are M unoccupied states followed by N occupied

states giving a phase space that looks like an annulus. The hole in the center of the annulus

has a total of M states and hence a radius of
√

M
N =

√
µ. Note that µ is precisely equal to

the weight of the box in the lower right hand corner divided by N . The area of the black

9Recall that our fermions are in an external x2 potential so that fixed energies E = p2 + x2 are rings in

the x, p plane.
10We call the two dimensional plane on which the LLM boundary condition is specified the LLM plane.

This plane is at y = 0 and has coordinates x1, x2.
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annulus and its white center is proportional to M + N (since together they correspond to

M +N states). The outer radius of the annulus is thus
√

N+M
N =

√
1 + µ. Note that 1+µ

is precisely equal to the weight of the box in the upper right hand corner divided by N .

Thus, the factor by which the oscillators are rescaled is equal to the value of radius in the

LLM plane at which the dual graviton is created.

What is the energy of a state of gravitons created at a given radius on the LLM

plane? Given the interpretation in terms of a free fermion phase space, this energy is just

the number of gravitons times the energy of a single graviton and the energy of a single

graviton is given by the radius squared times N . This tells us that gravitons are small

ripples on the outer edge of the annulus and countergravitons are ripples on the inner edge

of the annulus.

We will now focus on excitations of the outer edge of the annulus, i.e. those created by

a†. The energy measured by (3.8) is measured with respect to the background B. In the

LLM picture, gravitons exciting the outer edge of the annulus have an energy N(1 + µ).

This is the energy of the graviton measured with respect to the true vacuum of the theory.

There is a natural way to modify (3.8) to get agreement with the LLM result: we can

introduce a rescaled time coordinate τ = N(1+µ)t. In this case, the Hamiltonian becomes

H = Na†a.

To see that this rescaling does the job, note that the expectation value of the energy of a

coherent state of a† quanta is

〈z|H|z〉 = 〈z|a†a|z〉 = z̄z = Nr2.

The number operator acts as

[N,Oz ] = e
−|z|2

2(1+µ)

∞
∑

n=0

n zn On

(1 + µ)
n
2

√
n!

,

so that the expected number of gravitons, is given by

〈z|N |z〉 = 〈[N,Oz ]O†
z〉 =

r2

1 + µ
.

Comparing the expectation value of the energy to the expectation value of the number

operator we see that each graviton has an energy of N(1 + µ). The Lagrangian governing

the low energy excitations of this coherent state is

L = 〈z|i d

dt
|z〉 − 〈z|H|z〉 = N

(

dφ

dτ
r2 − r2

)

.

This is indeed the Lagrangian for the dynamics of gravitons in the LLM geometry (we

have reproduced (3.41) of [18]). Notice also that the angular momentum (= R charge)

computed using the rescaled time τ

∂L

∂ dφ
dτ

= Nr2
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is equal to the energy, as expected for a BPS state. A similar argument for a coherent state

of countergravitons gives11

〈z|H|z〉 = 〈z|b†b|z〉 = −Nr2, 〈z|N |z〉 =
r2

µ
.

This suggests that each countergraviton has an energy of Nµ. This matches the energy of

a graviton exciting the inner edge of the annulus.

It is not surprising that we need to work with the energy measured with respect to the

true vacuum, to obtain agreement with the dual gravity picture. The giant graviton probe

of [18] is identified with a highly excited fermion; the energy measured with respect to the

true vacuum is precisely the energy of this fermion. In addition, the analysis of [21] focuses

on very heavy half-BPS states. Almost all such states correspond to Young diagrams whose

shapes are small fluctuations around a fixed limiting curve. This characterization of typical

states is done using statistical ensembles which assign the energy measured with respect to

the true vacuum, to each state. In both cases above the rescaled time coordinate is given

by τ = ct with c the weight of the boxes that are added or removed. Thus, we are lead

rather naturally to rescaling time differently for the various sectors of the field theory. The

LLM geometries have a time coordinate that is warped, so that there are various “local”

times as well as the global time coordinate. Our work might provide a natural way to

understand these time rescalings in the field theory.12 We hope to return to this issue.

Using Schur technology it is simple to verify that

〈

χB(Z)†√
fB

(

Tr (Zp †)√
pNp

)n(
Tr (Zp)√

pNp

)m χB(Z)√
fB

〉

= n![(1 + µ)p]nδm,n . (3.9)

Thus, we can again identify operators which create gravitons which each carry p units of

angular momentum. Does the graviton operator Tr (Zp) have a local decomposition? We

will now define and give evidence for the matrix replacement Z → Za + Zb. Using the

results of [19, 17, 20], we know that we can associate matrices in the Schur polynomial

with boxes in the Young diagram. Using this insight, at the level of the Schur polynomial,

the replacement amounts to allowing each box to have an identity ‘a’ or ‘b’ and summing

over all possible identities. Thus, for example

Tr (Z2) = χaa(Z) + χab(Z) + χba(Z) + χb b(Z) − χa
a
(Z) − χa

b
(Z) − χb

a
(Z) − χb

b
(Z).

When we now take a product of Young diagrams, we use the usual Littlewood-Richardson

rule except that we are only allowed to add ‘a’ boxes to the upper right hand region of the

background Young diagram and ‘b’ boxes to the lower right hand region of the background

Young diagram. This refinement of the Littlewood-Richardson rule defines what we mean

by the decomposition Z → Za + Zb. We have checked that this recipe reproduces (3.9).

Thus, for example, Tr (Zp
a) creates a localized graviton, localized at the outer edge of the

annulus, carrying p units of angular momentum.

11In this case, we have introduced a different rescaled time coordinate τ = µt.
12We would like to thank the anonymous referee who suggested this interpretation.
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Figure 6: The Young diagrams corresponding to giant gravitons.

Note that, to leading order in N , when B has O(N2) boxes and
∑

i pi is O(1), we have

(the pi are all distinct)

〈

χB(Z)†√
fB

∏

i

(

Tr (Zpi †)√
piNpi

)n(
Tr (Zpi)√

piNpi

)m χB(Z)√
fB

〉

(3.10)

≡
〈

∏

i

(

Tr (Zpi †)√
piNpi

)n(
Tr (Zpi)√

piNpi

)m
〉

B

=
∏

i

〈(

Tr (Zpi †)√
piNpi

)n(
Tr (Zpi)√

piNpi

)m〉

B

.

The fact that the expecation value of the product is the product of expectation values,

where we define expectations by

〈O〉B ≡
〈

χB(Z)†√
fB

O
χB(Z)√

fB

〉

is in fact a consequence of the fact that χB(Z) creates a new background. Indeed, whenever

the expectation value of the product is the product of expectation values, we are dealing

with a classical limit.

We have considered excitations that correspond to small ripples at the edges of the

annulus. These excitations correspond to point like gravitons and their R charge (with

respect to the background) is O(1). We can also consider excitations with a large R-

charge, of O(N). These excitations correspond to giant gravitons.

To create a giant graviton, we need to build up a single column till it has O(N) boxes

stacked in the column; to create a counter giant graviton we need to remove boxes from a

single column till we have a scar of O(N) boxes eroded from the Young diagram. These two

possibilities are shown in figure 6. Denote the number of boxes added/eroded to produce

the giant by p. Set µp = p
N . When we build our coherent state below, we will assume

that all giant graviton states contributing to the coherent state have p+O(1) boxes. Thus,

the weight of the last box added to produce the giant divided by N is 1 + µ − µp and the

weight of the last box eroded to produce the countergiant divided by N is µ + µp. Using
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the methods we introduced above, we can write

Tr (Z)√
N

↔ a† + b + A† + B ,
Tr ( d

dZ )√
N

↔ a + b† + A + B† .

a, b, a†, b† are the operators introduced above which satisfy

[a, a†] = 1 + µ, [b, b†] = µ.

The operator A† adds one unit of energy to the giant; B removes one unit of energy from

the counter giant. A and B are not normal bosonic operators - they are Cuntz oscillators,

satisfying

AA† =
c

N
= 1 + µ − µp, A†A = (1 + µ − µp)(1 − |0〉〈0|),

BB† =
c

N
= µ + µp, B†B = (µ + µp)(1 − |0〉〈0|). (3.11)

In these formulas, c is again the weight of the box which is added/removed by the oscillator.

An operator dual to a normalized giant graviton state with energy n is given by

Op =

√

Np(N + M − p)!

(N + M)!

(

Tr (Z)A√
N

)p χB(Z)√
fB

;

an operator dual to a giant graviton coherent state is given by

Oz = N
∞
∑

n=0

zn

(1 + µ)n

(

Tr (Z)A√
N

)n χB(Z)√
fB

(1 + µ)n =
n
∏

i=1

(1 + µ + µi),

N =

[ ∞
∑

n=0

( |z|n
(1 + µ)n

)2 (N + M)!

(N + M − n)!Nn

] 1
2

. (3.12)

We take z small enough that the expected number of gravitons in this state p = O(N) and

µp ≪ 1. It is straight forward to verify that

[

Tr
(

d
dZ

)

√
N

,Op

]

=
√

1 + µ − µpOp−1,

[

Tr
(

d
dZ

)

√
N

,Oz

]

= zOz .

The Lagrangian governing the low energy excitations of this giant graviton coherent state

is13

L = 〈z|i d

dt
|z〉 − 〈z|H|z〉 = N

(

r2 dφ

dτ
− r2

)

.

which is the correct Lagrangian for D3 branes in an LLM geometry [18].

Finally, consider probing the background B with a string. The same computation,

using different methods, has been given in [12]. We probe with a closed string of the form

Tr (Y Zn1
a Y Zn2

a Y · · ·Y ZnL
a ),

13t = −2Nτ d

dr2 logN ; since the equations of motion set r to a constant we have treated r as a constant

in performing this rescaling.
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corresponding to a string localized at the outer edge of the annulus, or

Tr

(

Y

(

d

dZ

)n1

b

Y

(

d

dZ

)n2

b

Y · · · Y
(

d

dZ

)nL

b

)

,

corresponding to a string localized on the inner edge of the annulus. These loops are not
1
2 -BPS and hence their one loop anomalous dimensions are non-zero. One can define a

Cuntz oscillator Hamiltonian whose spectrum gives this one-loop anomalous dimension.

The computation of the relevant correlators involving these loops is outlined in appendix

B. In the AdS5×S5 background, these correlators can be computed by associating a lattice

with the Y Higgs fields and Cuntz oscillators with the Zas and
(

d
dZ

)

b
s. In the background

B this is also the case, except that the Cuntz oscillators are rescaled by the (now familiar)

square root of the weight divided by N . For Za we use

αα† = 1 + µ, α†α = (1 + µ)(1 − |0〉〈0|),

and for
(

d
dZ

)

b
we use

ββ† = µ, β†β = µ(1 − |0〉〈0|).
The Cuntz oscillator Hamiltonian which gives the one loop anomalous dimension, at large

N , is (see appendix B)

H = λ

L
∑

l=1

(αl − αl+1)
†(αl − αl+1)

for strings localized at the outer edge of the annulus. In the large N limit, where our Cuntz

operator representation is valid, the operator

Oz =
∞
∑

n=0

zn

(1 + µ)n
Zn

a =
∞
∑

n=0

zn

(1 + µ)n
(α†)n,

is dual to a coherent state. Indeed, it satisfies [α,Oz ] = zOz. We can put each site of

the loop into such a coherent state with a different coherent state parameter; denote the

resulting state by |z1, z2, · · · , zL〉. The semiclassical sigma model action governing the low

energy dynamics of this lattice model is given by14

S =

∫

dt

(

i〈z1, z2, · · · , zL|
d

dt
|z1, z2, · · · , zL〉 − 〈z1, z2, · · · , zL|H|z1, z2, · · · , zL〉

)

.

In the large L limit the above sums become integrals leading to

S = L

∫

dt

∫ 1

0
dσ

(

(1 + µ)r2φ̇

1 + µ − r2
− λ

L2
∂σz∂σ z̄

)

.

Comparing this to the fast string limit of the Polyakov action for a string moving in an

LLM geometry, we read off (recall that the outer radius of the annulus Ro =
√

1 + µ)

Vφ(x1, x2, y = 0) =
1 + µ

1 + µ − r2
=

R2
o

R2
o − r2

,

14H in this action does not include the leading contribution to the dimension of the operator; it includes

only the g2
YM correction. For the loop we consider the full contribution comes from the F -term. See [11, 12]

and references therein.
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Figure 7: This Young diagram is a generalization of the background considered in the previous

section. The outer edge of each ring corresponds to an inward pointing corner.

which is the correct result for Vφ(x1, x2, y = 0) as felt by a string moving at the outer edge

of the annulus. Probing the inner edge gives (recall that the inner radius of the annulus

Ri =
√

µ)

Vφ(x1, x2, y = 0) = − µ

µ − r2
= − R2

i

R2
i − r2

.

The negative sign in this formula comes from the fact that when we probe the inner edge

we do so with counter excitations. Summing these two gives the complete LLM answer for

Vφ(x1, x2, y = 0).

3.2 An arbitrary number of rings

We can generalize the results of the previous section to consider the Young diagram shown

in figure 7. The geometry now corresponds to a sequence of concentric rings.

A corner of the Young diagram that we can erode by removing blocks is called an

outward pointing corner; a corner of the Young diagram that can be used to grow the

diagram by adding blocks is called an inward pointing corner. Fields localized at an

outward (inward) pointing corner carry a subscript b (a). The corners identified in figure

7 all correspond to inward pointing corners. Tr (Z)√
N

can be decomposed as

Tr (Z)√
N

=
∑

i

Tr (Zai
)√

N
+
∑

j

Tr (Zbj
)√

N
,

where i is summed over all inward pointing corners and j is summed over all outward

pointing corners. Each of the local fields on the right hand side can only add boxes

at their corner. Tr (Z)√
N

corresponds, in the dual quantum gravity, to a sum of oscillator
∑

i a†i +
∑

j bj . Similarly,

1√
N

Tr

(

d

dZ

)

=
∑

i

1√
N

Tr

(

d

dZai

)

+
∑

j

1√
N

Tr

(

d

dZbj

)
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corresponds to the sum of oscillator
∑

i b†i +
∑

j aj where again i is summed over all outward

pointing corners and j is summed over all inward pointing corners. It is a simple matter

to check that

[ai, a
†
i ] =

cai

N
,

where cai
is the weight of the boxes at the ith inward pointing corner and

[bj , b
†
j ] =

cbj

N
,

where cbj
is the weight of the boxes at the jth outward pointing corner. Finally, arbitrary

mixed correlators, for example of the form

〈

χB(Z)√
fB

Tr
(

(Zai
)n(Z†

ai
)n
) χB(Z)†√

fB

〉

≡
〈

Tr
(

(Zai
)n(Z†

ai
)n
)〉

B
〈

[(

d

dZbi

)n]

ij

χB(Z)√
fB

[(

d

dZ†
bi

)n]

ji

χB(Z)†√
fB

〉

≡
〈

Tr

(

(

d

dZbi

)n
(

d

dZ†
bi

)n)〉

B

(3.13)

are easily computed using the modified ribbon graphs
〈

(Zai
)ij(Z

†
ai

)kl

〉

B
=

cai

N
δilδjk,

〈

(

d

dZbj

)

ij





d

dZ†
bj





kl

〉

B

=
cbj

N
δilδjk. (3.14)

3.3 Eigenvalues

The split of both Tr (Z) and Tr
(

d
dZ

)

into local operators has been defined by stating what

action these operators have on the background Young diagram. Is there a more direct

definition which would allow us to construct these local (in the bulk) operators? The 1
2

BPS sector of the theory on R×S3 is governed by the singlet sector dynamics of the action

S =

∫

dt Tr

(

1

2

dZ

dt

dZ†

dt
− 1

2
ZZ†

)

.

The eigenvalue dynamics of this model is the dynamics of N nonrelativistic fermions [5,

6, 21, 22]. The eigenvalues of Z are related to the positions of the fermions. Now, recall

a few facts from the usual harmonic oscillator: the position X ∼ a† + a has a vanishing

expectation value for any energy eigenstate; for X2 however we find

〈n|(a + a†)2|n〉 = 〈n|(aa† + a†a)|n〉 ∼ n,

so that the expectation value of X2 is large if n is large.

In the large N limit, we expect that the eigenvalues of Z can be described by a

classical configuration. Armed with our harmonic oscillator insight, we expect that the

eigenvalues will be large if the corresponding fermion is highly excited. A highly excited

fermion corresponds to a long row in the Young diagram. Thus, the Young diagram of

the background B is a “picture” of the eigenvalues of the classical large N configuration
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for Z in the sense that there is an eigenvalue for each row in the Young diagram and the

size of the eigenvalue is related to the length of the row. For example, the background

corresponding to the Young diagram pictured in figure 7 will have eigenvalues clumped

around four values. Z can thus be split into four submatrices which each have eigenvalues

of roughly the same size. We suggest that this split is precisely the split of Z into local

operators.

It is easy to gather numerical support for this proposal. Consider a matrix

Z =

[

λ1 0

0 λ2

]

.

The product

χ (Z)χ (Z) = χ (Z) + χ (Z)

follows as a simple application of the Littlewood-Richardson rule. Our local operators will

satisfy

χ (Z)χa(Z) = χ (Z), χ (Z)χb(Z) = χ (Z).

Consider the case that λ1 ≫ λ2. Then our proposal says Z = Za + Zb with

Za =

[

λ1 0

0 0

]

, Zb =

[

0 0

0 λ2

]

.

We thus have the predictions

χ (Z)λ1 = χ (Z), χ (Z)λ2 = χ (Z),

which should be true when λ1 ≫ λ2.

In figure 8 we have plotted

F =
χ (Z)λ2

χ (Z)
,

against y = λ1
λ2

. As y increases, F very rapidly approaches 1, confirming our proposal.

Thus, locality on the Young diagram maps, at least for widely separated eigenvalues,

into locality on the eigenvalues.

4. Beyond LLM

The LLM geometries correspond, in the super Yang-Mills theory, to operators built using

a single matrix Z. In this section we would like to consider geometries which correspond

to operators built using two matrices X and Z. These backgrounds will include the 1
4

BPS geometries of [23]; we are not yet able to make contact with these geometries. The

operators we have in mind are the restricted Schur polynomials of [9]

χR,(rn,rm)(Z,X) =
1

n!m!

∑

σ∈Sn+m

Tr (rn,rm)(ΓR(σ))Zi1
iσ(1)

· · ·Zin
iσ(n)

X
in+1

iσ(n+1)
· · ·Xin+m

iσ(n+m)
.

(4.1)
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Figure 8: A plot of F against y = λ1/λ2.

The two point function of these operators is trivial to compute using the results of [9].

They also satisfy a product rule as shown in [24]. Thus we can compute the correlators

needed to probe the geometry with gravitons. The precise form of the product rule for

restricted Schur polynomials involves the computation of restricted traces; we do not yet

have efficient methods for this. However, in the special case that rn is a Young diagram

with M columns and each column contains exactly N boxes we can write [24]

χ+rm,(rn,rm)(Z,X) =
(hooks)rn(hooks)rm

(hooks)+rm

χrn(Z)χrm(X).

After normalizing this becomes (the hat denotes a normalized operator)

χ̂+rm,(rn,rm)(Z,X) =
χrn(Z)
√

frn

χrm(X)
√

frm

≡ χB(Z,X).

Clearly, in this case the required product rule is just the Litttlewood-Richardson rule.

Thus, we can study these backgrounds using the methods of section 3. We will not be

so general: in what follows we will assume that rn and rm are both rectangles that have

N rows and that rn has Mn columns and rm Mm columns. We take both Mn and Mm

to be O(N) so that µn ≡ Mn

N and µm ≡ Mm

N are numbers of O(1). The backgrounds we

consider are perhaps the most trivial that could be considered. Indeed, all traces that

appear contain only Xs or Zs. It would be much more interesting to consider backgrounds

which are dual to operators that have traces over a product of Xs and Zs.
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It is straight forward to verify that

Op =
1

(1 + µn)p/2
√

p!

(

χ (Z)√
N

)p

χB(Z,X),

Op =
1

(1 + µm)p/2
√

p!

(

χ (X)√
N

)p

χB(Z,X), (4.2)

are normalized p graviton states, as are

O−p =
1

µ
p/2
n

√
p!

(

Tr
(

d
dZ

)

√
N

)p

χB(Z,X),

O−p =
1

µ
p/2
m

√
p!

(

Tr
(

d
dX

)

√
N

)p

χB(Z,X).

Thus, even in this more general two matrix background we can define operators dual to

local gravitons. Tr (X) and Tr (Z) create these gravitons and the state must again be

normalized by the factor c/N that appeared above; this suggests that these gravitons

propagate on some classical geometry. For the gravitons created by Tr (Z) c is read from

rn; for the gravitons created by Tr (X) c is read from rm. This result is easy to interpret:

the gravitons built using Zs feel only the background of χrn(Z) whilst the gravitons built

using Xs feel only the background of χrm(X). This is a consequence of the fact that our

background takes the form of a Schur polynomial in X times a Schur polynomial in Z.

For more general backgrounds we do not expect that this will be the case. This result

suggests that it may be possible to construct some nontrivial 1
4 BPS geometries by cleverly

combining LLM geometries.

5. Discussion

The Schur polynomials (and their multimatrix generalizations) provide a convenient way

to organize the interactions of a matrix model - by using the Schur polynomials we have

been able to compute correlators that involve O(N2) fields. Direct confrontation of these

correlators using standard Feynman diagrams is daunting; using the Schur polynomials,

these computations are simple. The Schur polynomials have two properties that are ulti-

mately responsible for this simplicity: (i) one can compute their two point function exactly

and further they diagonalize the two point function; (ii) they satisfy a simple product rule

which allows a straight forward computation of n-point correlators.

The Schur polynomials are a nontrivial linear combination of terms which each have a

different trace structure - the number of traces and the number of fields in each trace vary

from term to term. The Young diagram is a book keeping device which keeps track of this

structure i.e. it summarizes exactly how the Schur polynomial is constructed.

We have demonstrated some features of how the local geometry dual to operators

with a large R-charge emerges from the super Yang-Mills theory. In particular, we have

described how to define super Yang-Mills operators that are dual to localized excitations

in the bulk of the dual quantum gravity. The Young diagram labeling of the operators
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has played a crucial role. A Young diagram can be translated into an LLM boundary

condition - it corresponds to a set of concentric rings. Any LLM boundary condition that

is a set of concentric rings can be translated into a Young diagram. Localized excitations

in spacetime are also localized on the Young diagram. An excitation at a specific radius in

the LLM plane has an energy equal to the radius squared; thus by constructing excitations

of a specific energy we have constructed excitations localized at a specific radius and by

measuring the energy of the excitation we can determine where the excitation is localized.

We have defined local creation and annihilation operators that add or remove boxes at a

specific location on the Young diagram. These operators are normalized with a factor equal

to c
N where c is the weight of the box which was added/removed. The excitations that we

have studied are confined to move on the y = 0 LLM plane and orbit with φ̇ = 1 at a fixed

radius ro. This normalization factor c
N where c is the weight of the box corresponding

to the localized excitation, is also equal to the radius squared r2
o . Of course, as we have

reviewed, the weights of the Young diagram encode the specific way in which the indices of

the matrices making up the operator were symmetrized; we see that they also tell us the

radii of the rings of the LLM boundary condition.

The Hamiltonian obtained from the field theory measures energy with respect to the

background. By introducing a rescaled time coordinate τ = ct, we can ensure that the

Hamiltonian measures energy with respect to the true vacuum of the theory. In this way,

we are lead rather naturally to rescaling time differently for the various sectors of the field

theory. The LLM geometries have a time coordinate that is warped, so that there are

various “local” times as well as the global time coordinate. Our work might provide a

natural way to understand these time rescalings in the field theory.

A standard way to describe the large N limit of a matrix model is in terms of a

density of eigenvalues. A particular background would correspond to a specific eigenvalue

density. In this article we have used a Young diagram to specify the background. We

have seen however, that this Young diagram can be translated into a particular eigenvalue

distribution. A Young diagram describing m rings will correspond to a distribution in which

the eigenvalues are clustered into m “clumps” with eigenvalues in a particular clump having

similar magnitudes. This suggests that the free fermion picture of the eigenvalue dynamics

has a potential with m minima. The locality that we have seen emerge from the field

theory emerges when the clumps of eigenvalues have well separated values. This matches

nicely with other recent results [25].

Finally, note that the reorganization of the degrees of freedom that we have discussed

in this article has a natural extension to multimatrix models. Indeed, the multimatrix

operators given in [9] have a diagonal two point function and satisfy a generalization of the

Littlewood-Richardson rule [24]. More work is however needed to write the product rule

satisfied by the restricted Schur polynomials in a useful form. See also [7, 8] for alternative

multimatrix operators that can also be analyzed by exploiting group theory techniques.
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A. A review of the LLM geometries

The LLM geometries [2] are regular 1
2 BPS solutions of type IIB string theory that are

asymptotically AdS5×S5. They have an R× SO(4)× SO(4) isometry group. The metric is

given by

ds2 = −h−2(dt + Vidxi)2 + h2(dy2 + dxidxi) + yeGdΩ2
3 + ye−GdΩ̃2

3 ,

where

h−2 = 2y cosh G, z =
1

2
tanh G,

y∂yVi = ǫij∂jz, y(∂iVj − ∂jVi) = ǫij∂yz. (A.1)

The function z is obtained by solving

∂i∂iz + y∂y
∂yz

y
= 0.

Regularity requires that z = ±1
2 on the y = 0 plane. We will often trade the x1, x2

coordinates of the y = 0 plane for an angle and a radius r, φ or for the complex coordinates

z = x1 + ix2, z̄ = x1 − ix2.

For a set of rings having a total of E edges with radii Rl l = 1, 2, . . . , E we have

z =

E
∑

l=1

(−1)E−l

2





r2 + y2 − R2
l

√

(r2 + y2 + R2
l )

2 − 4r2R2
l

− 1



 ,

Vφ(x1, x2, y) =
E
∑

l=1

(−1)E−l+1

2





r2 + y2 + R2
l

√

(r2 + y2 + R2
l )

2 − 4r2R2
l

− 1



 . (A.2)

The fast string limit [26] of the Polyakov action for a string moving in an LLM geometry

is given by [11, 12]

S = L

∫

dτ

∫ 1

0
dσ

(

i

2
V ˙̄z − i

2
V̄ ż − λ

L2
∂σz∂σ z̄

)

.

B. Correlators

In this section we will compute the correlators needed to probe a general background B

with a closed string. In terms of the loop

O = Tr (Y Zn1
a Y Zn2

a Y · · · Y ZnL
a ),
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we wish to compute

〈

OO†
〉

B
≡
〈

χB√
fB

OO† χ†
B√
fB

〉

.

Assume the ni are all distinct. The leading contribution at large N comes from the following

contraction of the Y s

〈

OO†
〉

B
≡
〈

χB√
fB

L
∏

i=1

Tr (Zni
a (Z†

a)
ni)

χ†
B√
fB

〉

.

Look back at the correlation functions (2.1) and (2.5). These correlators are easy to

reproduce using the two point function

〈

ZijZ
†
kl

〉

= δilδjk.

Now consider (3.1) and (3.9). These correlators are clearly reproduced if we take

〈

(Za)ij(Za)
†
kl

〉

= (1 + µ)δilδjk.

By considering more general correlators, it is straight forward to see that all such correlators

are reproduced by the rule

〈

(Zloc)ij(Zloc)
†
kl

〉

=
c

N
δilδjk, (B.1)

where Zloc acts locally on the Young diagram, adding boxes with weight c up to addition of

an irrelevant (at large N) O(1) number. This clearly reproduces the correlators computed

using Schur technology.

Focus again on the case that B is the annulus. With the result (B.1) in hand we find

〈

OO†
〉

B
=

〈

χB√
fB

L
∏

i=1

Tr (Zni
a (Z†

a)
ni)

χ†
B√
fB

〉

=
L
∏

i=1

Nni+1(1 + µ)ni .

Clearly it is now straight forward to compute correlators needed when probing the back-

ground with a closed string state.

A very convenient way to account for the planar contractions is by introducing Cuntz

oscillators [28]. The matrix two point function determines the Cuntz oscillator algebra. In

terms of Cuntz oscillators (B.1) becomes

αα† =
c

N
, α†α =

c

N
(1 − |0〉〈0|).

The analysis of [27] can now be applied to obtain the Cuntz Hamiltonian quoted in

section 3.1.
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